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Abstract

The transient natural convection has been analyzed for the temperature dependent viscosity of fluids in spherical

annulus and between two vertically eccentric spheres. Using the modified Sorenson’s method to generate the grid line

can get the grid system with orthogonality along all boundaries. The grid system goes along with weighting function

scheme to discretize the general governing equation. Numerical solutions were obtained for Rayleigh numbers

(5.0 · 103–6.5· 104) at a radius ratio of 2.0 with the dimensionless vertical eccentricity of the outer sphere (0–± 0.65) for

variable viscosity fluids at different Prandtl numbers (158, 405 and 720). The results of this analysis show that heat and

flow patterns vary with the Rayleigh number and the eccentricity; besides, the effect of variable viscosity is investigated.

The present calculations applied to constant viscosity are compared with the results of other papers, and these com-

parison results are agreeable.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in enclosures finds many prac-

tical applications in the many diverse fields of present

engineering practice, such as the cooling of the passive

cooling of advanced nuclear reactors, the solar energy

collector, gyroscope, geophysical fields, and the thermal

storage systems [1]. It is important in these applications

to realize flow field and heat transfer in enclosures

considering the effect of local buoyancy.

For the environment with large temperature differ-

ence and the fluid with high Prandtl number, the change

of physical properties is affected most by the viscosity.

Therefore, the consideration of influence from the tem-

perature dependent viscosity of fluid in enclosures is

necessary. Horne and O’Sullivan [2] investigated the
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effect of temperature dependent viscosity and thermal

expansion coefficient on convection in a porous medium

heated and found the critical Rayleigh number de-

creased 31%. Wazzan et al. [3,4] studied the stability of

water flow over heated and cooled flat planes with var-

iable viscosity fluids. Jang and Mollendorf [5] found the

effect of variable viscosity tending to stabilize a vertical

natural convection boundary layer. Chou et al. [6] pre-

sented that the effect of variable viscosity makes tem-

perature gradient of fluid larger and this gradient

increases as Prandtl number increases.

The problem of natural convection in a spherical

annulus and between two vertically eccentric spheres is

more intricate than in other configurations of enclosures

to solve exactly due to complicated configurations.

Mack and Hardee and others [7–13] had the related

research for the mechanism of natural convection be-

tween concentric and vertically eccentric spheres or in

horizontal eccentric annuli. The viscosity of working

fluid is assumed to be constant in those papers and fluid

patterns with lower Prandtl numbers were investigated.
ed.
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Nomenclature

C coefficients used in Eq. (9)

D, E, F , G parameters used in obtaining the glycerol–

water solution viscosity

e vertical eccentricity

f dynamic viscosity ratio (lðT Þ=lm)

g local gravitation acceleration

J Jacobian

L annular gap (�rro � �rri)
m exponential constants occurs in Eq. (9)

Nu local Nusselt number (hL=k)
Nu averaged Nusselt number

P , Q function used in coordinate transformation

Pr Prandtl number (lm=qmam)
Ra Rayleigh number (gbmðT i � T oÞL3=mmam)
R� ratio of outer and inner radius ratio, ro=ri
�rr radial coordinate

r dimensionless radial coordinate (�rr=L)
T temperature

T dimensionless temperature (ðT � T oÞ=ðT i�
T oÞ)

Greek symbols

a thermal diffusivity

b thermal expansion coefficient

e dimensionless vertical eccentricity (e=L)
h polar angular coordinate

h� polar angle at vortex center

u cone angular coordinate

a�, b�, c� factor of coordinate transformation

n transverse coordinate in transformed plane

g longitudinal coordinate in transformed

plane

l dynamic viscosity

m kinematic viscosity

q fluid density

s dimensionless time (ta=L2)
�ww stream function

w dimensionless stream function (�ww=aL)
�xx vorticity

x dimensionless vorticity (�xxL2=a)
/ variables occurs in coordinate transforma-

tion

Subscripts

i inner

m reference value

o outer

max maximum
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The fluids with higher Prandtl numbers and with tem-

perature dependent viscosity in a spherical annulus were

not studied in the past so that the research is motivated

in this paper.

Therefore, the objective of this paper is to investigate

the transient natural convection of fluids with high

Prandtl number and temperature dependent viscosity in

a spherical annulus and between two vertically eccentric

spheres. Effects of variable viscosity and eccentricity on

the flow field, temperature distribution and heat transfer

are discussed. The related equations between the aver-

aged Nusselt numbers and Ra number are provided for

various eccentricities and Prandtl numbers.
Fig. 1. Coordinate system for physical domain.
2. Mathematical analysis

Consider a spherical annulus and two vertically

eccentric spheres filled with quiescent and viscous fluid

as shown in Fig. 1. The fluid is glycerol–water solutions

with solution concentrations 70%, 80% and 90%; cor-

responding to Prandtl numbers are 158, 405 and 720 for

glycerol–water solutions as adopted by Chen and

Pearlstein [14]. The related physical properties of gly-

cerol–water solutions could be found from Segur [15]

and Segur and Oberstar [16].
Initially, the fluid inside the enclosure is at uniform

temperature and a quiescent state is assumed, while the

inner sphere is suddenly changed to a higher tempera-

ture (T i) and outer sphere is maintained at lower tem-

perature (T o). The eccentricity of two vertical spheres
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is e. While the center of outer sphere is above that of

inner sphere, e is positive. While the center of outer

sphere is below that of inner sphere, e is negative. �hh is

positive while it is clockwise. To formulate the problem,

it is assumed that (1) fluid is Newtonian fluid, axisym-

metric laminar and incompressible flows, (2) all fluid

properties, are taken to be constant, except both the

density in term of buoyancy with the assumption of

Boussinesq and viscosity variation with temperature, (3)

viscous dissipation is neglected; (4) radiation and com-

pression effects are neglected.

A grid coordinate system is built by the way of the

grid generation of controllably body-fitted elliptic par-

tial differentiation in this paper. The coordinate (r; h) of
every point in a physical plane is transformed into a

coordinate (n; g) in a calculation plane by coordinate

transformation as shown in Fig. 2. In the process of

coordinate transformation, the first and second partial

derivatives are denoted in term of chain rule as
Fig. 2. The coordinate (r; h) of every point in (a) physical plane

transformed into a coordinate (f; g) in the (b) calculated plane.
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where / is variable.

From above assumption and coordinate transfor-

mation, the governing equation of spherical coordinate

system can be obtained.
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The associated initial and boundary conditions in a

calculation plane are

s ¼ 0; T ¼ 0; w ¼ x ¼ 0

s > 0
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Fig. 3. Comparison of local Nusselt numbers at different grid sizes for constant viscosity (R� ¼ 2:17, Pr ¼ 0:7 and Ra ¼ 1� 105).
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(d) lower axis line segment ðn ¼ nmaxÞ
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Fig. 4. A comparison of flow patterns between the present re-

sult (a) and the previous experiment (b) [19] for R� ¼ 2:17,

Pr ¼ 0:7 and Ra ¼ 7:392� 105.
3. Numerical method

When the modified Sorenson’s method [17] is used to

generate the grid line, it can get the grid system with

orthogonality along all boundaries and this system can

enhance the accuracy of calculation. Besides, the

hyperbolic tangent distribution [18] is applied to have a

denser grid distribution near the boundaries. Because

the weighting function scheme [19] treats with cross-

derivatives effectively, we use it to discretize Eqs. (2)–(4)

with the grid system. The governing equations consist

of stream function equation, vorticity transport equa-

tion, and energy equation. Vorticity transport equa-

tion and energy equations are solved by employing

the alternating direction implicit and stream is solved

by the successive line over-relaxation method [20].

The solution was considered convergent when the rela-

tive error between the new and old values of the field

variables U during every time step becomes less than

a prescribed criterion (10�5), where U represents T , x
and w.
j/new � /oldjmax

j/newjmax

6 10�5

The calculated values of T , x and w from above equa-

tion become the initial values of next time step, and keep

replacement. Further, the convergence of the steady-

state solution is determined by requiring the relative

error between the present and next time step values of all



Table 1

Comparison of the averaged Nusselt number, the maximum

stream function and vortex center position between the present

result and other result for R� ¼ 2:0, Pr ¼ 0:7, and Ra ¼ 103

Nu wmax h� (�)

Present result 1.1025 3.249 80

Mack and Hardee [7] 1.1200 3.210 77

Atsill et al. [8] 1.1200 3.490 79

Singh and Chen [9] 1.1010 – –

Garg [10] 1.1200 – –

Chu and Lee [11] 1.1099 3.209 81

Chiu and Chen [12] 1.1021 3.236 81
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field variables for the inner and outer spheres to be

within 0.001% or

j/nþ1 � /njmax

j/nþ1jmax

6 10�5

The rate of heat transfer plays an important role for

reference. The local Nusselt number at inner and outer

radii is defined as

Nui;o ¼ � 1

riro
r2
oT
or

� �
r¼ri ;ro

ð9Þ
Fig. 5. Transient isotherms (left) and streamlines (right) for R� ¼ 2:0, Pr ¼ 405, Ra ¼ 6:0� 104 and e ¼ 0:0 with (a) constant viscosity

(b) variable viscosity.
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The averaged Nusselt number at inner and outer radii is

defined as
Nui;o ¼ �
Z x

0

Nui;o
sinðhÞ
2

� �
dh ð10Þ
4. Results and discussion

Due to the lack of the papers on transient natural

convection heat transfer of fluids with variable viscosity

in a spherical annulus and between two vertically
Fig. 6. Transient isotherms (left) and streamlines (right) for R� ¼ 2:0, P
(b) variable viscosity.
eccentric spheres, therefore, the Newtonian fluid with

constant viscosity is tested at first. To check the effect of

grid size on the numerical result, we used three different

grid sizes to carry out the computations for a concentric

annulus. Fig. 3 shows the comparison of results from

three different set of grid size 61 · 31, 91· 31, and

101· 31 at Rayleigh number of 1· 105 for a concentric

annulus with constant viscous fluid at Prandtl of 0.7.

From Fig. 3, the local Nusselt numbers at outer sphere

for steady state have a lot much difference between 0 and

30 degrees for grid size 60 · 31 but the results from grid

sizes 90· 31 and 101· 31 are very close. To make sure

the accuracy of the numerical solution and time saving
r ¼ 405, Ra ¼ 6:0� 104 and e ¼ 0:65 with (a) constant viscosity
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of calculation, this article used grid size 91· 31 to obtain

all the results presented here. Fig. 4 shows the compar-

ison between the calculated streamlines by the author

and the measured streamlines in Yin et al. [21] for

Newtonian fluid with constant viscosity. Both results are

very close. Table 1 compares the calculated mean Nus-

selt number by the present study and by earlier papers

[7–12]. The result is very accurate.

The temperature of inner sphere is higher than that of

outer sphere at the initial s ¼ 0.005 from Fig. 5(a) for

fluid with constant viscosity. The fluid on outside sur-
Fig. 7. Transient isotherms (left) and streamlines (right) for R� ¼ 2

viscosity (b) variable viscosity.
face of the inner sphere is heated through heat conduc-

tion from surface of inner sphere. The density of fluid

becomes lower and it begins to expand. Due to the effect

of gravity, the fluids close to the surface of inner sphere

flow upward along the surface of the inner sphere. The

hotter fluid meets on the top of inner sphere and creates

a hot boundary layer next to inner sphere at this mo-

ment. At s ¼ 0:02, since the inner sphere is kept hotter,

the created upward buoyant momentum keeps whole

region of fluid moving. The fluid above the top of inner

sphere keeps moving upward to meet the inside surface
:0, Pr ¼ 405, Ra ¼ 6:0� 104 and e ¼ �0:65 with (a) constant



H.W. Wu et al. / International Journal of Heat and Mass Transfer 47 (2004) 1685–1700 1693
of outer sphere. The temperature of outer sphere is

lower, and due to the action of convective heat transfer

from fluid, the heat transfers outside the wall of outer

sphere. The fluid on inside surface of the outer sphere is

cooled and the density of fluid becomes higher. The

fluids close to the surface of outer sphere flow downward

along the surface of the outer sphere due to the effect of

buoyancy. It forms a shape like a feather-column and

the shape is named as Thermal Plume. Until s ¼ 0:08,
the downward fluid close to outer sphere forms a cold

boundary layer next to outer sphere. At last steady state

and s ¼ 0:2478, the fluid reaches the bottom surface of

outer sphere and do not rise any more. It forms a

stagnation area and shows a moving enclosed ring of

fluid. This is displayed on the streamline distribution.

Fig. 5(b) shows that the development of temperature

field for the fluid with variable viscosity is the same as

the fluid with constant viscosity at the same condition,

but the distortion on isotherm distribution is more

obvious than the fluid with constant viscosity. The
Fig. 8. Steady isotherms (left) and streamlines (right) for R� ¼ 2:0, e
(a) Pr ¼ 158, (b) Pr ¼ 405, (c) Pr ¼ 720.
vortex center represents the maximum value of stream

function. The value of the vortex center is 44.592 at

s ¼ 0:02 from Fig. 5(a), but that of the vortex center is

63.471 at s ¼ 0:005 from Fig. 5(b). The variation of

streamline in the fluid with variable viscosity is larger

than the fluid with constant viscosity and it reaches the

maximum value faster. This proves that the effect of

buoyancy in the fluid with variable viscosity is stronger,

the development of its isotherm is distorted earlier and

finally it reaches steady state faster than the fluid with

constant viscosity.

From Fig. 6 for the fluids with variable viscosity and

constant viscosity, the change of isotherms in two ver-

tically eccentric spheres with the eccentricity of 0.65 is

similar to the development in a spherical annulus. The

change of eddy following the thermal plume begins

development. The vortex center rises rapidly and the

thermal plume moves downward along the interior of

outer sphere. After reaching the steady state, the vortex

center in fluid with constant viscosity is located at
¼ 0:0, and different Rayleigh numbers with variable viscosity
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around h� ¼ 68:5� steadily, and the vortex center in fluid

with variable viscosity is located at around h� ¼ 18:5�.
The value of streamline function in the fluid with vari-

able viscosity is larger than the fluid with constant vis-

cosity and both values are larger than those in the

spherical annulus. This specifies that the outer sphere

has a bigger heat absorbing area; therefore positive

eccentricity configuration has a better effect of convec-

tion heat transfer. The definition of critical Rayleigh

number (Rac) represents the critical value of Rayleigh

number for the transition of elementary flow regime to
Fig. 9. Transient variation of local Nusselt number for constant visc

(b) e ¼ 0:0, (c) e ¼ 0:65.
secondary Flow regime, but the primary vortex center is

located above the inner sphere as shown in Fig. 6(a). The

streamlines collapse from original unicellular convection

vortex into two convection vortexes. The newly formed

vortex is named as secondary vortex and this is sec-

ondary flow regime. For negative eccentricity configu-

ration in Fig. 7 and the fluids with variable viscosity and

constant viscosity, the heat absorbing area above inner

sphere is smaller and has the disadvantage to the method

of natural convection heat transfer. The method of

conduction is the main governing mechanism of heat
osity with R� ¼ 2:0, Pr ¼ 405 and Ra ¼ 6� 104 (a) e ¼ �0:65,
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transfer in the upper portion of inner sphere. For the

fluid with variable viscosity, a counter-clockwise sec-

ondary streamline nest displays above the inner sphere

at s ¼ 0:02 and its value of streamline is )34.137.
Therefore, it makes the isotherms display a phenomenon

of severe distortion. The value of streamline is )2.68 in

secondary streamline nest at the steady state. In this

situation, it is similar to that Caltagirone et al. [22] have

stated. In general, the secondary streamline nest occurs

at the condition of critical Rayleigh number. This

specifies that the fluid with variable viscosity reaches to
Fig. 10. Transient variation of local Nusselt number for variable vis

(b) e ¼ 0:0, (c) e ¼ 0:65.
the critical Rayleigh number faster than the fluid with

constant viscosity. From the fluids with variable vis-

cosity and constant viscosity in both spherical annulus

and between two vertically eccentric spheres, the higher

the location of vortex center above inner sphere is at

steady state, the stronger the effect of convection is and

the larger the value of streamline is.

Fig. 8 is a comparison of isotherms and streamlines

at the steady state when the Rayleigh number and Pra-

ndtl number change for the fluid with variable viscosity.

The value of streamlines becomes larger as the value of
cosity with R� ¼ 2:0, Pr ¼ 405 and Ra ¼ 6� 104 (a) e ¼ �0:65,
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Ra becomes larger from. This specifies that the effect of

buoyancy becomes larger as Ra increases, and thus it

enhances the effect of convection heat transfer. When

Rayleigh number is 5.0 · 103, the developments on both

isotherms and streamlines in Fig. 8 are almost the same.

At Ra ¼ 5:0· 104, the value of streamline for Pr ¼ 720 is

larger than those for Pr ¼ 158 and Pr ¼ 405. This proves

that the fluid with variable viscosity and high Prandtl

number can enhance the effect of buoyancy and it is

more distinct as Rayleigh number becomes larger. As

shown in Fig. 8(c) Pr ¼ 720, it has reached to the state of

secondary vortex. Fig. 8(a) Pr ¼ 158 and Fig. 8(b)

Pr ¼ 405 with same Rayleigh number show that the
Fig. 11. Steady local Nusselt number versus angle position at R� ¼ 2

(a) Pr ¼ 158, (b) Pr ¼ 405, (c) Pr ¼ 720.
phenomenon does not occur yet. This specifies that as Pr
is increased, the concentration of glycerol–water solu-

tions will increase, and then the effect of thermal con-

vection is stronger, and the critical Rayleigh number will

be decreased.

Figs. 9 and 10 are the distributions of transient local

Nusselt numbers contrast to Figs. 5–7 related to angular

position. In Figs. 9(b) and (c) and 10(b) and (c), the

distributions of local Nusselt numbers Nuo on the inte-

rior of outer sphere are the minimums at the beginning

and then reach to the whole maximums at steady state.

The distributions of local Nusselt numbers Nui on the

exterior of inner sphere are the maximums at the
:0, Ra ¼ 5:0� 103 and 5.0· 104 for fluid with variable viscosity



Fig. 12. Relation of averaged Nusselt number (Nu) with Rayleigh number (Ra) at steady state for R� ¼ 2:0 and Pr ¼ 158.

Fig. 13. Relation of averaged Nusselt number (Nu) with Rayleigh number (Ra) at steady state for R� ¼ 2:0 and Pr ¼ 720.
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beginning and then reach to the whole minimums at

steady state; the local Nusselt numbers Nui are the
minimums at h� ¼ 0�. The local Nusselt numbers Nuo on
the interior of outer sphere are the maximums at steady



Table 2

Averaged Nusselt number with Rayleigh number and eccentricity of glycerol–water solution with constant viscosity

e Ra

1.0 · 103 5.0 · 103 1.0· 104 5.0· 104 6.0 · 104 6.5 · 104

Nu for Pr ¼ 405

0.65 1.4685 1.8650 2.1355 3.1135 3.2635 3.3320

0.0 1.0946 1.6850 2.0460 3.0605 3.1975 3.2795

)0.65 1.3985 1.7360 1.9925 2.8965 3.0345 3.0955

Nu for Pr ¼ 158

0.65 1.4684 1.8648 2.1360 3.1140 3.2645 –

0.0 1.0946 1.6853 2.0463 3.0722 3.2149 –

)0.65 1.3985 1.7365 1.9930 2.9071 3.0321 –

Nu for Pr ¼ 720

0.65 1.4685 1.8649 2.1355 3.1132 3.2636 –

0.0 1.0946 1.6853 2.0464 3.0726 3.2149 –

)0.65 1.3985 1.7365 1.9930 2.9071 3.0347 –

Table 3

Averaged Nusselt number of glycerol–water solution with variable viscosity

e Ra

1.0 · 103 5.0 · 103 1.0· 104 5.0· 104 6.0 · 104 6.5 · 104

Nu for Pr ¼ 405

0.8 1.8476 2.2450 2.5517 4.1756 – –

0.65 1.4726 1.9055 2.2435 4.0150 4.3900 4.5725

0.0 1.0988 1.7385 2.1675 3.9135 4.2555 4.4220

)0.65 1.4009 1.7690 2.0825 3.6610 4.0100 4.2440

)0.8 1.7652 2.0825 2.3466 3.6526 – –

Nu for Pr ¼ 158

0.65 1.4691 1.8803 2.1758 3.4622 3.7030 –

0.0 1.0963 1.7055 2.0921 3.3967 3.6193 –

)0.65 1.3995 1.7490 2.0265 3.1852 3.3985 –

Nu for Pr ¼ 720

0.65 1.4709 1.9231 2.2994 4.5313 – –

0.0 1.0966 1.7596 2.2296 4.3865 – –

)0.65 1.3994 1.7824 2.1288 4.0997 – –
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state and h� ¼ 0�. Nuo and Nui have the maximums and

the minimums in the fluid with constant viscosity in Fig.

9(a), but the maximums and minimums are always at

h� ¼ 0–45� as time proceeds. This shows that secondary

vortex can occur. The maximums of Nuo in the fluid with

variable viscosity in Fig. 9(b) are between 25� and 30� all
the time, and therefore secondary vortex displays at

h� ¼ 25� and steady state. The negative eccentricity

configuration generates the disadvantageous condition

for natural convection; this makes maximums of Nuo
and Nui less than those in both spherical annulus and

positive eccentric spheres.

Fig. 11(a)–(c) are the distributions of steady local

Nusselt numbers related to angular position when Pra-

ndtl number changes. The effect of different Rayleigh
number on result of heat transfer can be seen. According

to the condition Pr ¼ 158 in Fig. 11(a), the local Nusselt

numbers on exterior of inner sphere have minimums at

h� ¼ 0�. The value of Nui increases as angular degree

increases; the maximums occur at h� ¼ 180�. The whole

variation is not large due to the formation of heat

boundary layer on exterior of inner sphere. Except at

h� ¼ 0�, the variation of thickness is smaller than that of

the rest due to the rising upward of fluid, so that the

coefficient of heat transfer has not much variation. The

local Nusselt numbers on interior of outer sphere (Nuo)
decrease gradually as angular degree increases. The

minimums are located at h� ¼ 180�. The whole variation
is larger than Nui because the thickness of heat boundary
layer on interior of outer sphere is very thin and the



Table 5

The coefficient of Eq. (9) of glycerol–water solution with vari-

able viscosity

e C m Ra

Pr ¼ 405

0.8 0.0332 1.8494 1.0 · 103–5.0· 104
0.65 0.1864 0.2834 1.0 · 103–6.5· 104
0.0 0.1018 0.3376 1.0 · 103–6.5· 104
)0.65 0.1862 0.2756 1.0 · 103–6.5· 104
)0.8 0.0319 1.8098 1.0 · 103–5.0· 104

Pr ¼ 158

0.65 0.2786 0.2311 1.0 · 103–6.0· 104
0.0 0.1434 0.2924 1.0 · 103–6.0· 104
)0.65 0.2802 0.2227 1.0 · 103–6.0· 104

Pr ¼ 720

0.65 0.1835 0.2867 1.0 · 103–5.0· 104
0.0 0.0904 0.3540 1.0 · 103–5.0· 104
)0.65 0.1901 0.2742 1.0 · 103–5.0· 104
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coefficient of heat transfer is larger. Nuo decreases be-

cause the heat boundary layer becomes thicker as it

moves downward and generates stagnation area at the

bottom of outer sphere; the coefficient of heat transfer is

smaller. Therefore, the values of Nuo have big variation

with angular position. From a comparison of Fig. 11(a)

with (b) and (c), the effect of variable viscosity at

Ra ¼ 5� 103 does not affect the Nusselt number distri-

butions too much even with different Prandtl numbers;

the values of Nui or Nuo almost have similar trend. Until

Ra ¼ 5� 104, Nui or Nuo of fluid with variable viscosity

for Pr ¼ 720 is larger than Nui or Nuo of fluid with

variable viscosity for Pr ¼ 158 and 405 and the maxi-

mum values are larger.

For Pr ¼ 158 and 720 in Figs. 12 and 13 and, the

corresponding average Nusselt numbers are also plotted

versus the Rayleigh numbers in a logarithmic–logarith-

mic coordinates. The higher the Prandtl number is, the

larger the Nu is for the same Ra number. The Nusselt

numbers and Ra number in a logarithmic–logarithmic

coordinates are linear related in laminar flow regime.

The related equation is

Nu ¼ CRam ð11Þ

The average Nusselt numbers are obtained from Tables

2–5. They represent the average value of heat transfer

from the viewpoint of engineering and an investigation

of the important effect of the integral average value of

heat transfer in different Ra number. That the average

value of heat transfer increases as Ra number increases

regardless of fluids with constant or variable viscosity.

C and exponent m of Eq. (11) are listed in Tables 2–5 for

three individual fluids with different Prandtl number and

constant viscosity or variable viscosity in a spherical

annulus and between two vertically eccentric spheres.

The maximum error is less than 5%.
Table 4

The coefficient of Eq. (9) of glycerol–water solution with con-

stant viscosity

e C m Ra

Pr ¼ 405

0.65 0.3472 0.2022 1.0· 103–6.5· 104
0.0 0.1816 0.2613 1.0· 103–6.5· 104
)0.65 0.3394 0.1975 1.0· 103–6.5· 104

Pr ¼ 158

0.65 0.3559 0.1991 1.0· 103–6.0· 104
0.0 0.1794 0.2628 1.0· 103–6.0· 104
)0.65 0.3478 0.1944 1.0· 103–6.0· 104

Pr ¼ 720

0.65 0.3560 0.1991 1.0· 103–6.0· 104
0.0 0.1794 0.2628 1.0· 103–6.0· 104
)0.65 0.3475 0.1946 1.0· 103–6.0· 104
5. Conclusion

The effects of variable viscosity on transient flow

field, temperature distribution and Nusselt number have

been investigated for the natural convection between

two concentric (and vertically eccentric) spheres. The

numerical obtained results further indicated that heat

and flow patterns vary with the Rayleigh number and

the eccentricity of the annulus under various Prandtl

numbers. The Prandtl number does not affect the flow

field for lower Ra number. When Ra number increases,

the higher the Prandtl number is, the less stable the flow

field is, and it reaches critical state earlier. At Ra > Rac,
elementary flow field loses its stability and is trans-

formed into secondary flow regime. Rac decreases as

Prandtl number increase. The effect of variable viscosity

enhances the result of convection and increases rate of

heat transfer. The characteristic of heat transfer from

flow field can be expressed as a linear relation of log of

Nu and log of Ra under various Prandtl numbers. The

positive eccentric configuration can obtain better result

of heat transfer but the negative eccentric configuration

has disadvantageous space for the development of nat-

ural convection and decreases the result of heat transfer.
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